Computation of Standard Interval Functions in Multiple-Precision Interval Arithmetic
نویسندگان
چکیده
We present quadratic convergent algorithms for the computation of standard interval functions like √ , ln, arctan in a multiple-precision interval arithmetic. These algorithms depend on elliptic integrals of the first and second kind and the method of arithmetic and geometric means. Представлены квадратично сходящиеся алгоритмы для вычисления стан-дартных интервальных функций, таких как √ , ln, arctg в интервальной арифметике многократной разрядности. Эти алгоритмы построены с ис-пользованием эллиптических интегралов первого и второго рода и метода арифметического и геометрического средних.
منابع مشابه
Computing hypergeometric functions rigorously
We present an efficient implementation of hypergeometric functions in arbitraryprecision interval arithmetic. The functions 0F1, 1F1, 2F1 and 2F0 (or the Kummer U -function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, ...
متن کاملRigorous High Precision Interval Arithmetic in COSY INFINITY
In this paper we present our implementation of a complete multiple machine precision interval package in FORTRAN 77. The operations are designed to perform optimally with up to about 100 significant digits. The implementation only requires IEEE 754 compliant floating point operations, and thus is highly portable to virtually any modern computer platform. Intervals are stored as unevaluated floa...
متن کاملStaggered Correction Computations with Enhanced Accuracy and Extremely Wide Exponent Range
In C-XSC a staggered interval arithmetic with precision p is defined as an array of p + 1 components of type double. The disadvantage of this multiple precision arithmetic is the rather small exponent range and particularly the dramatic loss of accuracy, if intermediate results of computations lie near the underflow range. In order to avoid these difficulties a new class lx interval is implemen...
متن کاملCAMPARY: Cuda Multiple Precision Arithmetic Library and Applications
Many scientific computing applications demand massive numerical computations on parallel architectures such as Graphics Processing Units (GPUs). Usually, either floating-point single or double precision arithmetic is used. Higher precision is generally not available in hardware, and software extended precision libraries are much slower and rarely supported on GPUs. We develop CAMPARY: a multipl...
متن کاملCORDIC Processor for Variable-Precision Interval Arithmetic
In this paper we present a specific CORDIC processor for variable-precision coordinates. This system allows us to specify the precision to perform the CORDIC operation, and control the accuracy of the result, in such a way that re-computation of inaccurate results can be carried out with higher precision. It permits a reliable and accurate evaluation of a wide range of elementary functions. The...
متن کامل